

Welcome to the 12th Annual MAVES

3 May 2020

Thank YOU, 2020 vendors, for your support!!

During the breaks, please visit our supporting vendors in their breakout room through the <u>CHAT</u> function and be entered into a raffle for Amazon gift cards!

• We have no financial disclosures

EVLP and **IVLP**

- Donation after cardiac death (DCD) donors
- Rehabilitate marginal donor lungs

Mechanism

- Limits hydrostatic edema
- Balances oncotic forces
- Attenuates inflammatory response
- Improved pulmonary function
- IVLP
 - Directed chemotherapy phase II clinical trial
 - Can attenuate sepsis-induced ARDS in porcine model

Ongoing Challenges in Lung Transplant

- Primary Graft Dysfunction
 - Complicating up to 25% of transplants
- Donor shortage/low utilization
 - 15-20% of lungs from multi-organ donors transplanted
- Potential solutions?
 - Extended criteria donors
 - Donation after cardiac death (DCD) donors
 - Ex Vivo Lung Perfusion (EVLP)

EVLP – Framework

	EVLP Protocols		STUERS/72 TSION TO TSION
Perfusion	Toronto	Lund	OCS
Target Flow	40% Cardiac Output	100% Cardiac Output	2-2.5L/min

Experimental Rationale

- Limit inflammation and shear stress to protect the endothelium
- Improve the balance between hydrostatic and oncotic forces to limit edema

EVLP utilizing lower flow perfusion would result in improved lung function compared to standard perfusion targets.

Methods – Study Groups

Methods – Experimental Overview

• No difference in donor oxygenation or compliance

EVLP Pulmonary Artery Pressure

PA pressures higher in High Flow beyond 2 hours of EVLP

* Indicates p<0.05

EVLP Compliance

p>0.05 for all

No difference in compliance between groups during EVLP

EVLP Oxygenation

Better oxygenation at the end of EVLP in Low Flow treated lungs

Reduced Pulmonary Edema

- Similar tissue edema after ex vivo lung perfusion
- Decreased tissue edema after transplant and 4 hours of reperfusion

Pro-Inflammatory Cytokine IL-1β

• Attenuation of IL-1 β in post-transplant lung tissue in Low Flow

• IL-1β key in neutrophil adhesion and initiation of lung inflammation

IL-1β

Differential Counts of BAL

- More neutrophil infiltration into alveolar space in High Flow
- Alveolar capillary barrier breakdown and acute inflammation

Post-Reperfusion Graft Function

* Indicates p<0.05

Left Lung Specific Oxygenation (mmHg) 600-* * 500-400-300-200 100-0-120 60 180 240 0 Time From Reperfusion (minutes) Low Flow **High Flow**

Α

- Oxygenation improves after transplant in Low Flow
- Compliance better early after transplant and persists

Summary – Low Flow EVLP Rehabilitates

- Improvement in post-transplant lung function
 - Graft oxygenation
 - Lung compliance

(430 vs. 232 mmHg) (21.1 vs. 10.3 ml/cm H₂O)

- Involves attenuation of inflammation and endothelial preservation
 - IL-1β reduced
 - Less edema accumulation
 - Fewer alveolar neutrophils

(927 vs. 2070 pg/ng protein) (wtd: 7.1 vs. 8.8) (43.3% vs. 75.3%)

Conclusions

- 1. Low Flow EVLP improves post-transplant graft function.
- 2. Lower perfusion flows attenuate post-transplant inflammation and edema compared to standard EVLP flows.
- 3. Low Flow EVLP should be used as the basis for lung rehabilitation protocols and may be key to expanding the use of EVLP.

EVLP for ARDS?

- LPS injection
- HCL down airway
- Colon perforation

Injury Model

Superior Oxygenation

Rehabilitation on EVLP

In Vivo

Control

Control

p=0.02

Superior Function

Reduced Histologic Injury / Edema

Cytokines

Adhesion Molecules

Superior Function

Treatment with 2-hours of IVLP would result in non-inferior lung rehabilitation when compared to 4 hours of treatment.

Methods – Experimental Overview

Lung specific oxygenation and compliance were sampled hourly throughout experimen

No significant difference in baseline oxygenation and compliance

• No significant difference in post-LPS oxygenation and compliance

2-Hour Group Oxygenation

- Treated left lung performed significantly better in 2-Hour Group
- 332.2 ± 58.94 vs. 264.4 ± 46.53
- 75% (3/4) Decannulated from ECMO

Histologic Changes

- Lung Injury Severity trended lower for the treated lungs in the 2-Hour Group
- Edema score trended lower for the treated lungs in the 2-Hour Group

Differential Counts of BAL

- Significantly less neutrophil infiltration into the treated lung of the 2-Hour Group
- 2-Hour Group
 - 54.11% ± 3.83 vs. 71.75% ± 7.52
- 4-Hour Group
 - 46.19% ± 22.48 vs. 51.52%
 ± 27.07

IL-6 Concentration in BAL

- Decreased IL-6 expression in treated lungs of 4-Hour Group.
- 2-Hour Group:
 - 0.480 ± 0.233 ng/mL (left lung) vs. 0.755 ± 0.280 ng/mL (right lung)
- 4-Hour Group:
 - 0.968 ± 0.203 ng/mL (left lung) vs. 3.820 ± 0.828 ng/mL (right lung)

Future?

Extracorporeal Cardiopulmonary Resuscitation (ECPR)

- Benefits of ECPR
 - Improved survival and neurologic function
 - Oxygenated blood to vital organs
 - Additional time to treat reversible causes of cardiac arrest
- Does not address damage caused by no-flow and low-flow periods

Post cardiac arrest syndrome

- Comprised of:
 - Myocardial damage
 - Cerebral inflammation
 - Global tissue damage
- Due to Ischemia-reperfusion injury

• Attenuated by Adenosine 2A receptor activation

Hypothesis

Adenosine 2A receptor activation will improve survival and decrease the overall burden of injury in cardiac arrest treated with ECPR.

Right atrial cannula

- High Dose ATL1223 (0.6ng/kg/min)

Systemic Injury

Fluid and Hemodynamics

Organ Injury

24 hour survival model

- Build upon the 6 hour study
- See if Adenosine 2A receptor agonist given during ECPR has a lasting effect
- Try an Adenosine 2A receptor approved by the FDA for human use

Methods

- Porcine model of fibrillatory arrest and ECPR
- Double-blind experimental design

Randomization

Saline control (5mL/hour)

ATL1223 (0.6 ng/kg/min)
 Low dose Regadenoson
 (0.144 mcg/kg/hour)
 High dose Regadenoson
 (14.4 mcg/kg/hour)

Results

- 20 swine included in the experiment
 - n=5 per group
- All were defibrillated into sinus rhythm after 30 minutes and weaned from ECMO at 6 hours
- Neurologic function was demonstrated in all animals

Survival

Kaplan-Meier Survival Curve

- ······ Saline
 - 95% Confidence Interval
- --- Regadenoson (low)
- Regadenoson (high)
- --- ATL 1223

Troponin I

Conclusions

- Selective Adenosine 2A receptor activation improves survival after cardiac arrest treated with ECPR
- Clinical use of Adenosine 2A receptor agonists could decrease the considerable morbidity and mortality associated with post cardiac arrest syndrome

Acknowledgements

Lab Team

- Dustin Money
- Tony Herring
- Cindy Dodson
- Qing (Jane) Yu
- Deepika Kotay
- Yunge Zhou

Faculty

- Victor Laubach
- Curtis Tribble
- Mark Roeser
- Irving Kron

Residents

- Matthew Byler
- Zach Chancellor
- Alec Shannon
- Aimee Zhang
- J Hunter Mehaffey
- Eric Charles
- Adi Narahari
- Jared Beller

Funding

- NIH NHLBI
 - T32 HL007849 and R01 HL119218