

Welcome to the 12th Annual MAVES

3 May 2020

Thank YOU, 2020 vendors, for your support!!

During the breaks, please visit our supporting vendors in their breakout room through the CHAT function and be entered into a raffle for Amazon gift cards!

Caring for Lives through Innovation, Quality and Service

INVOSUITE SILVER SPONSORS

Extracorporeal Membrane Oxygenation: Just the basics

Sarah Guthrie, PA-C

"Copyrighted material used with permission of the author, University of Iowa Hospitals & Clinics, uihc.org."

Objectives

- □Understand the basics of ECMO and its application
- □ Identify key components to the ECMO circuit
- □ Identify the role of Clinical Specialist in the care of ECMO patient
- □ Identify methods for anticoagulation
- Recognize additional mechanical interventions seen with ECMO

ECMO basics

- Used for management of life threatening pulmonary and/or cardiac failure when other treatment is not working
- Essentially a modification of the cardiopulmonary bypass circuit used in cardiac surgery
- Temporary support allow for time for treatment and recovery of organs
- Used to deliver oxygen and remove carbon dioxide
- Two types:
 - Respiratory Failure requires VV (veno-venous) ECMO configuration
 - Cardiac Failure requires VA (veno-arterial) ECMO configuration

What is Extracorporeal Membrane Oxygenation?

As defined by the Extracorporeal Life Support Organization (ELSO):

The use of mechanical devices to support heart and/or lung function in severe heart or lung failure, unresponsive to optimal conventional care. (Brogan, 2017)

Goals of ECMO

- Bridge to decision
 - Recovery
 - Durable ventricular Assist Device
 - Transplant
 - Withdrawal

Indications for ECMO

Respiratory Failure (V-V)

- Refractory Hypoxemia
- Refractory Hypercapnia
- Ventilator Induced Lung Injury
- Acute Respiratory Distress Syndrome
- H₁N₁

Cardiovascular Compromise (V-A)

- Acute myocardial infarction
- Post cardiotomy
- Acute Myocarditis
- Acute Pulmonary Embolism
- Bailout post cardiac intervention
- Preoperative Support
- Acutely decompensated chronic cardiomyopathy

Exclusion criteria of ECMO

Absolute Contraindication

- Pre-existing condition incompatible with recover
 - Severe neurological injury
 - End stage malignancy

Relative Contraindication

- Very poor prognosis from primary condition
- Uncontrollable bleeding
 - Unable to tolerate anticoagulation
- Aortic insufficiency
- Aortic Dissection

Types of ECMO support access

- Percutaneous veno-venous (V-V) ECMO
- Central veno-atrial (V-A) ECMO
- Percutaneous veno-atrial (V-A) ECMO
- Percutaneous veno-venous-atrial (V-V-A) ECMO
- Percutaneous veno-atrial-venous (V-A-V) ECMO

Percutaneous V-V ECMO

Traditional cannulation placement

- Drainage cannula- right femoral vein, tip in IVC
- Right internal jugular, tip in SVC
- Can also cannulate via bilateral femoral veins

Percutaneous V-V ECMO

Dual Cannula

- drain from distal port in IVC
- return flow into RA

Figure 3: single cannula V-V ECMO (Napp et al, 2016)

Central V-A ECMO

- Drainage cannula in right atrium
- Return cannula in aorta
- Requires sternum to remain open
- Difficult to transport

Percutaneous V-A ECMO

- Drainage cannula in femoral vein terminating by RA
- Return cannula in femoral artery, terminating in Iliac/aorta
- Need for flow into the SFA of cannulated limb
 - Antegrade perfusion canula- Return flow cannulas to prevent limb ischemia

Percutaneous V-V-A ECMO

Reduces circulatory overload of the heart and reduces filling pressures

- Blood is drained from SVC and IVC
- Further lowers blood volume into the heart/lungs
- Effectively decreases CVP and PA pressures

Percutaneous V-A-V ECMO

Return flow is divided

- Drainage cannula in femoral vein, terminating in IVC by RA
- Return cannulas in femoral artery, terminating in iliac/aorta, and right internal vein, terminating in SVC by the RA

Equipment

- Perfusionist typically maintain the ECMO circuits and their availability
 - cannulas
 - tubing
 - pump
 - membrane oxygenator
 - heat exchanger
 - gas blender
- Each facility maintains their own set up and device that varies in size and transport capability

Basic ECMO Circuit

- 1. Pump
 - RPM
 - Volume
 - Flow
- 2. Membrane Oxygenator
 - FiO2
 - Sweep
- 3. Heat Exchanger

Pumps

Centrifugal

- More efficient designs of pumps result in safer use than previous designs
- Magnetic driven and magnetic suspended pumps available

Roller

- Positive displacement pump generating forward flow as a function of tubing size and pump speed
- Fundamental in the conduct of CPB and ECLS
- Better for lower blood flows

https://thoracickey.com/extracorporeal-membrane-oxygenation-in-infants-and-children/

Flow

- V-A ECMO (for cardiac failure): 50-60cc/kg/min. The flow is limited by vascular access, length and size of cannula, and pump properties.
- V-V ECMO (for respiratory failure): 60-80cc/kg/min. CO2 removal always exceeds O2 delivery. Besides blood flow, oxygenator/membrane properties and gas sweep determine O2 and CO2 levels.

Membrane Oxygenator Used to add oxygen and remove CO₂

Sweep: gas ventilated through gas exchange

Membrane Oxygenator

ABG goals on ECMO

• pH: 7.35-7.45

pCO2: 35-45 mmHg

• pO2: 80-100mmHg

Titrating FiO2:

- \uparrow FiO₂ = \uparrow pO₂
- \downarrow FiO₂= \downarrow pO₂

Titrating Sweep:

- \uparrow sweep = \uparrow CO₂ removal
- ↓ sweep = ↓ CO2 removal

Delivered Oxygen

- DO2=CO x CaO2 (mL/min/m2)
- CaO₂=(1.34 X Hgb X SaO₂) + (0.003 X PaO₂)

Clinical Specialists

- ECMO clinical specialist (CS) is "technical specialist trained to manage the ECMO system and the clinical needs of the patient"
- CS may be perfusionists, nurses, respiratory therapists
 - Perfusionists may be ideal due to their knowledge and training of CPB and ECMO
- Defined CS help streamline and provide consistency for ECMO emergencies
- Resource for the providers, nurses, patient

Anticoagulation Strategies

- Unfractionated Heparin (UNFH) infusion
 - First line medication for ECMO thrombus prevention
 - Measured by aPTT
 - Risk to develop heparin inducted thrombycytosis and thrombosis (HITT)
 - Risk to develop heparin resistance

Anticoagulation Strategies

- Bivalirudin (Angiomax) infusion
 - DTI- direct thrombin inhibitor
 - Measured by aPTT
 - Ideal in setting of HITT, heparin resistance, or non-HIT thrombocytopenia
 - Falsely raises INR
 - Renally cleared, can be used in CRRT/HD

Anticoagulation Strategies

- Argatroban infusion
 - DTI
 - Measured by aPTT
 - Second line medication when bivalirudin is not ideal
 - Falsely raises INR
 - Contraindicated in transaminitis/shock liver

Anticoagulation Monitoring

- Activated Clotting Time (ACT)
- Activated Partial Thromboplastin Time (aPTT)
- Anti-factor Xa Assay (Anti-Xa)
- Antithrombin Level (AT)
- Lactic Dehydrogenase (LDH)

ACT: goal 160-180 seconds

Advantages

- Can be done at bedside
- Minutes to obtain
- Only a drop of blood

Disadvantages

- Multiple causes for high ACT
 - Excessive anticoagulation
 - Thrombocytopenia
 - Coagulopathy
 - Combination of all above
- Variability in the ACT even from a single sample

aPTT goal: 60-80 seconds

Advantages

- More accurate than ACT
- Decreased risk of hemorrhagic complications when using UNFH

Disadvantages

- Increased risk of circuit clots when using UNFH
- Unreliable in critical illness due to effects of acute phase reactants
 - Falsely prolonged with elevated Creactive protein
 - Falsely decreased with elevated Factor
 VIII

Anti-Xa goal: 0.3-0.5 units/mL

Advantages

- More accurate than aPTT
- Decreased blood product use, hemorrhagic complications, and increased circuit life

Disadvantages

 Send out lab at most hospitals – prolonged turn around time and costs

Antithrombin [deficiency]

- Antithrombin is an Important inhibitor of coagulation
 - need it to stop coagulation
- AT deficiency occurs secondary to chest tube losses (consumption)
- Can be replaced by fresh frozen plasma or by Antithrombin III (AT₃)
 - Counterintuitive– need to restore antithrombin to prevent clots
- Send out lab at most hospitals

LDH and Plasma Free Hemoglobin

- Measures of hemolysis from the ECMO circuit due to:
 - Sheering stress
 - High ECMO flow
 - Cavitation (chugging, chatter)
 - Pressure changes in oxygenator
- Elevated values increase risk of circuit thrombus and embolic events

Lab Draws

- How often? 4 hours? 6 hours? 12 hours?
 - ABG
 - Arterial blood gas bedside (EPOC, iStat)- quick result, less accurate, more expensive
 - Conventional lab accurate (gold standard), slower results
 - CBC
 - PT/INRPTT
 - Fibrinogen
 - LDH
 - Lactic Acid

To transfuse or not?

Lab evaluation	Goal
Platelets	Transfuse to maintain > 100,000 uL
INR	FFP transfusion to maintain INR < 2
Fibrinogen	Cryoprecipitate to maintain fibrinogen > 100 mg/dL
Hematocrit	PRBCs to maintain hematocrit > 25%
Antithrombin	FFP or AT ₃ to maintain Antithrombin > 50%

Pulsatile vs Non-pulsatile management

Pulsatile

- SBP goal 100-120mmHg
- LV contracting reduces risk of developing a thrombus
- Potential for North-South Syndrome

Non-pulsatile

- MAP goal 6o-8o mmHg
- May need surgical LV vent or Impella to decompress and prevent thrombus formation

North-South Syndrome

- Aka: Harlequin Syndrome, "Blue Head, Red Legs"
- Recovering heart prevents the retrograde flow from the ECMO circuit to perfuse the upper half of the body
- Consider V-A-V ECMO if unable to decannulate

Left Ventricle Vent

Reasons

- Findings of LV dysfunction with increased LV end-diastolic and systolic volumes increase myocardial wall stress
- Ex: impaired LV unloading, LV stasis, and pulmonary edema
- Is it needed?

Methods

- Surgical vent cannula placed in left atrium or ventricle or pulmonary artery
 - Axillary artery through the aortic valve to ventricle
- Intra-aortic balloon pumpdecompresses by lowering afterload reduction
- Impella effectively drains LV

CRRT and **ECMO**

A: First-line connection of CVVH to the ECMO circuit. Both lines connected between pump and oxygenator (segment B).

B: Second-line connection: Access line connected before the pump (segment A).

C: Both lines before the pump (segment A). Optional clamp adjusted on return line if pressure is below the low-pressure alarm. CVVH, continuous veno-venous hemofiltration.

Option 1: Pressures in CVVH access line < +200 mmHg and in return line <+350 mmHg

Advantages:

- No risk of air embolism
- Return line connected on positive pressure
- No oxygenation membrane shunt
- No recirculation

Drawbacks

 Access line connected on positive pressure

Option 2a: Used for high positive pressures in CVVH access line: > 200 mmHg

Advantages:

- Access line connected on negative pressure
- Return line connected on positive pressure
- No oxygenation membrane shunt
- No recirculation

Drawbacks

· hypothetical risk of air embolism

Option 2b: Used for high positive pressures in CVVH return line: > 350 mmHg

Advantages:

- Access line connected on negative pressure
- · No oxygenation membrane shunt
- No recirculation

S.A: Segment A: ECMO segment with negative pressure

S.B: Segment B: ECMO segment with positive pressure

Drawbacks:

- Theorical risk of air embolism
- Return line connected on negative pressure
 - But Clamp can mitigate negative pressure on return line in case of pressure below low pressure alarm

ASAIO JOURNAL

Patient Management - Ventilator

- Central V-A ECMO
 - Rest settings (low VT, PEEP support)
 - Goal is to maintain lung volumes
- Percutaneous ECMO
 - Variable, modes/settings are dependent on clinical situation and the presence of North-South Syndrome
- No evidence basis for ideal strategy, from anecdotal experience

Patient Management- Vasopressors

- Epinephrine, vasopressin, norepinephrine, phenylephrine
- Extremity ischemia/compartment syndrome

Patient Management - Inotropes

- Milrinone, epinephrine, dopamine, dobutamine
- No evidence basis for idea strategy, from anecdotal experience

References

- Annich G.M., Lynch W.R, MacLaren, G., Wilson J.M., Bartlett, R.H. (2012). ECMO Exracoproeal Cardiopulmonary Support in Critical Care (4th ed). Ann Arbor, MI: ELSO
- Brogan T.V., Lequier L. Roverto L., Graem M., Peek G. (2017). Extracoporeal Life Support: The ELSO Red Book (5th ed). Ann Arbor, MI: ELSO
- Camboni D, Schmid C. To vent or not on veno-arterial extracorporeal membrane oxygenation, does it improve myocardial recovery and outcome?. J Thorac Dis. 2017;9(12):4915–4918. doi:10.21037/jtd.2017.11.98
- de Tymowski, Christian; Augustin, Pascal; Houissa, Hamda; Allou, Nicolas; Montravers, Philippe; Delzongle, Alienor; Pellenc, Quentin; Desmard, Mathieu ASAIO Journal63(1):48-52, January/February 2017. doi: 10.1097/MAT.000000000000441
- Pavlushkov E, Berman M, Valchanov K. Cannulation techniques for extracorporeal life support. Ann Transl Med 2017; 5(4): 70. doi: 10.21037/atm.2016.11.47
- S Strunina, P Ostadal. Left ventricle unloading during veno-arterial extracorporeal membrane oxygenation. Curr Res Cardiol 2016;3(1):5-8.
- emDOCs [Image]. 2018. Retrieved from http://www.emdocs.net/extracorporeal-membraneoxygenation-ecmo-in- the-ed/